
DeepRacer Lab 1/Introduction Document

Introducing the DeepRacer.

Introduction

The AWS DeepRacer is an electric vehicle

designed specifically with machine

learning capabilities in mind. The car is

intended for use on a physical track and

relies on its cameras and a network

connection to a computer with a dedicated

GPU. Despite looking like an RC car, the

DeepRacer is intended to run

autonomously via a generated algorithm.

The algorithm that is used to run

autonomously is generated by a special

subset of machine learning called

reinforcement learning.

DeepRacer vs. CyBot

The DeepRacer differs greatly from the CyBot.

Mostly due to the processing power and sensors

available to each machine. The DeepRacer relies

on dual cameras as well as a lidar sensor and

gyroscope. The DeepRacer also has wifi

capabilities and a lot more processing power

than the CyBot, having an Intel Atom Processor

and 4 GB of RAM. The CyBot also has wifi

capabilities but only the processing capabilities

available to the Tiva C Series Launchpad

microcontroller- an ARM Cortex M4 CPU and

256 KB of memory. The CyBot also has light

sensors, left and right bump sensors, a ping

sensor, and an infrared sensor. The DeepRacer

needs a lot more processing power because of

how complex its algorithms are. It needs to process data from its sensors and send it over wifi to

a more powerful computer for processing. Based on this data it creates a new model for

navigating the environment that is stored on the DeepRacer for future decision making.

What is Machine Learning?

Machine learning is process in which a model is generated that is able to predict a desired output

based on some given input variables. A common example, which we will be using for this lab, is

an autonomous car. In order to train a model, we first need to understand what is happening

under the hood. The specific type of machine learning we will be focusing on is reinforcement

learning.

What Parameter Estimation?

Parameter estimation is a good place to start in understanding machine learning. Below is an

example to show that, when given an input and an output, we are able to estimate the policy that

governs the system.

In this system, were are given 100 random sets of 5 input variables. We then define our ideal/true

policy as the vector [1 8 4 6 2]. This was done arbitrarily for this example, but in the real world

we would not have access to this information and would need to solely rely on our inputs and

outputs. Our output is defined as x * transpose(theta) + noise which shows that even in a real

environment with imperfect data, we can still estimate a policy.

We then apply a formula to estimate theta, denoted theta hat, given our input and output data.

The formula used here is a pseudo-inverse formula, however there are other popular formulas

such as the gradient decent formula, which can converge to a better result and can be more

efficient for large data sets.

As can be seen, we are able to estimate the policy for our given system, which is the overall goal

of machine learning. This example uses only 5 inputs and is quite simple, however more

complex machine learning models are able to approximate many complex variables that may

govern the system.

Another method for parameter estimation is the Stochastic Gradient Decent (SGD) method. This

method follows the formula

𝜃𝑗 = 𝜃𝑗 + 𝛼(𝑦𝑖 − 𝑦 𝑖̂)𝑥𝑗
𝑖

Where 𝜃𝑗 is the j-th element of our true theta approximation, alpha is our learning rate (usually a

small number), 𝑦𝑖 is the i-th element of our output vector, and 𝑥𝑗
𝑖 is the j-th element of the i-th

row of x. This equation uses the stochastic approximation of the gradient between 𝑦 and 𝑦̂ to

always change 𝜃 in a way that minimizes the difference between 𝑦 and 𝑦̂.

View the Prelab.c document and try to understand how the code functions and play around with

it. Change the values in 𝜃 or the amount of noise in the signal. What happens for each of these

changes?

What happens when you decrease the samples in x?

 What happens when you increase or decrease alpha?

What happens if you add more entries to 𝜃?

After seeing how the code functions, how can you apply what you have learned to your

understanding of machine learning?

For more information into the SGD method of approximation, look at THIS Wikipedia article

which goes more in depth into its derivation and mathematical basis. If you are very interested in

the applications of the SGD in machine learning, HERE is an IEEE paper accessible through the

university in which a version of the SGD, the ‘Stochastic Gradient Descent with Momentum’, is

used in vehicle detection. Although it does not go into depth on the SGDm algorithm, it does

help show that it is useful to understand as well as gives further insight into the how neural

networks and convolutional neural networks function.

https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://ieeexplore.ieee.org/abstract/document/8540563

What is Reinforcement Learning?

Reinforcement learning is a style of machine learning is ideal for training autonomous models

and storing temporal data as opposed to supervised learning, which is more ideal for models that

rely on classifying and identifying information. This type of machine learning has also been used

to teach computers how to play video games like Pac-Man, Galaga, and even teach computers

how to walk in simulated environments.

This process requires two things on the part of the

trainer. One is an environment in which the

machine performs a task, and the other is a

policy.

Reinforcement learning, at its heart, simply tries

to maximize its efficiency for a given problem.

We first model our agent, which in our case is the

DeepRacer, as having certain states that it is able

to be in. We will first assume a discrete state

system, then move onto a continuous state system

which is what we will use for the DeepRacer.

Discrete State System:

In a discrete system, our robot is constrained to a limited amount of choices it is allowed to

make. The default action space for our robot is shown below.

This set of actions can be interpreted as a vector, which we will call A. We then interpret the

environment around the bot to create another matrix of environment variables and states. These

could include distance from the out of bounds line, angle relative to the track, or when and what

the last state transition was. This set of variables will be called S.

The goal of our policy, which we will call 𝜋, is to create a set of equations which maximizes the

reward defined in a reward function. This can be expressed by maximizing the equation

𝑃(𝑎𝑡 =  𝑎 | 𝑠𝑡 = 𝑠), which maximizes the probability for a state change given our state variables

s. An example of this is would be if we chose to reward our robot for staying on the middle line

of the track. The robot would start with completely random states that with each training iteration

would change slightly to slowly allow the robot to try multiple choices for different situations. It

would slowly learn that if our current action was turning left and we were by the left boundary,

the best state transition would be to turn away from the boundary. It would learn that the

probability of gaining more points by doing that is high and thus our policy would be weighted

in a way that next time the bot was close to the track boundary, it would turn away as our

probability equation for receiving reward points would be high. With enough training, our policy

will be able to recognize most environmental situations and, using the policy, determine what

state transition provides the best chance of receiving reward points.

Continuous State System:

In a continuous state system, like what the robot we are using will have, there are some tradeoffs

and advantages compared to the discrete state system. The largest disadvantage is the time

needed for training. As we now must consider every possible speed and steering angle

combination, there is much more complexity in computing the desired state transition. As we are

able to train on more advanced hardware however, this is less of an issue and the benefits of this

outweigh the cons. The first benefit is training potential. As the robot can now choose any

combination of speed and steering, it can find the optimal choice to maximize its reward whereas

in a discrete system it may need to compromise and thus the model will be worse. The second

big advantage of a continuous state system is the options allowed when making a reward

function. We are now able to set the rate of change of our angle and speed in the reward function

which may incentivize faster acceleration as well as the ability to stop zigzagging which can

waste time. In a discrete system, the only option would be to incentivize or penalize state

transitions however this also has the negative effect of then simultaneously penalizing necessary

state transitions. While these cons can all be fixed using proper coding techniques and smart

engineering, it is more efficient for our goal to use a continuous time state system.

How to use the DeepRacer

Step 1: DeepLearner GUI

Refer to the “Using DeepLearner” manual on getting started with the deep learning environment.

Step 2: The Reward Function

The reward function is necessary for reinforcement learning, it tells the model what outcomes are

desirable, what is undesirable, and gives a weight to certain outcomes to be able to prioritize

certain things. For example, here is a reward function that is given by Amazon to prioritize

object avoidance:

The way that the DeepRacer uses the reward function is it will perform random actions at first,

then evaluate it’s actions several times each second based on this reward function. Then the data

gathered is stored into a convolutional neural network in order to help the DeepRacer make

better decisions in the future.

Task: Use the given reward function or create your own to train a DeepRacer into

successfully completing a lap around the given track.

Step 3: Training and Racing

Task: Using the Reward function created in the previous step, train model for 20 minutes

and save the model to race and describe how well it performs. Next, continue the training

for another 20 minutes (Or longer if you prefer) and again save the model. Now, race the

two models and report on the difference the extra training time made in the race.

Training Iteration Reward graph Lap Time Description

1. 20 Minute Model

2. 40+ Minute Model

What differences did you observe?

Optional: Step 4: Race a friend

Model Reward graph Lap Time Description

You

Friend

How were your reward functions different? Did you focus on different aspects such as staying

close to the center or speed?

In what ways did your reward function outperform your friend’s reward function?

In what ways did your reward function underperform when compared to your friend's reward

function?

Would you change anything about your reward function after comparing it to your friend’s?

Step 5: Ending the Program

Before you leave, please be sure to STOP ALL TRAINING PROCESSES and save your

models. If you don’t, the server will automatically stop any processes currently running and

WILL NOT save that model.

